Od dekad trwa w nauce spór o to, jakie związki chemiczne dały początek życiu. Niewykluczone, że w "pierwotnej zupie", z której wyłoniło się życie, istniał najpierw nie RNA, nie DNA, ale ich hybryda - sugerują badania w "Nature", w których uczestniczyli Polacy.
Jak z nieożywionych atomów i związków chemicznych mogły powstać struktury, które zaczęły powielać same siebie, przenosić informacje i w rezultacie - dały początek życiu? Naukowcy zastanawiają się nad tym od dekad. Interesuje ich w szczególności pochodzenie kwasów nukleinowych - DNA i RNA.
DNA złożony jest z dwóch nici i wykorzystywany jest w organizmach żywych jako trwały nośnik, na którym zapisane są informacje o ich budowie. RNA z kolei to jednoniciowa struktura, na którą przepisywana jest informacja z DNA przed syntezą białek. RNA jest wprawdzie strukturą mniej trwałą, ale może też działać podobnie do enzymów - elementów wspomagających zachodzenie reakcji chemicznych.
Ponieważ RNA może pełnić obie te funkcje, rozpowszechniła się hipoteza, tzw. świata RNA - że to RNA było pierwsze, a DNA powstało z niego później.
Z badań pod kierunkiem prof. Johna Sutherlanda z Cambridge, które ukazały się w "Nature", wyłania się jednak inny obraz początków życia.
"Ta praca odsyła hipotezę świata RNA do lamusa. A właściwie mocno ją modyfikuje" - mówi w rozmowie z PAP prof. Robert Góra z Wydziału Chemicznego Politechniki Wrocławskiej, jeden ze współautorów. "Niewykluczone, że pierwsze polimery informacyjne były hybrydą RNA i DNA. A specjalizacja zaszła dopiero później" - dodaje.
Kolejny polski współautor, dr Rafał Szabla, z Instytutu Fizyki PAN i Uniwersytetu w Edynburgu, stypendysta programu START FNP, komentuje: "Idea jest taka, że DNA i RNA mogły powstać jednocześnie, a mają wspólne pochodzenie. To proste rozwiązanie. Ono leżało koło nas przez wiele lat, ale nikt tego wcześniej nie zauważył". Według niego inne scenariusze (np. ten o pierwszeństwie RNA), wydają się trudniejsze do zrealizowania.
RNA i DNA to ogromne cząsteczki ale składają się z zaledwie 4 nukleotydów - alfabetu, w którym zapisany jest kod genetyczny. Literki alfabetu RNA i DNA są do siebie dosyć podobne, ale nie identyczne.
Hybryda, o której mowa w "Nature", składała się również z 4 literek: 2 z nich są analogiczne do tych, które znamy z DNA, a dwie - do tych z RNA. Być może ta kombinacja tworzyła prastary alfabet życia, z którego potem powstały dwa nieco różniące się od siebie alfabety, które znamy dziś.
Naukowcy z zespołu prof. Sutherlanda wskazali ścieżki reakcji, do których mogło dojść w "pierwotnej zupie", aby z prostych związków możliwe było powstanie nukleotydów. Naukowcy wzięli pod uwagę, że na młodej Ziemi w okresie archaiku, ok. 3,8 mld lat temu, nie istniała warstwa ozonowa chroniąca naszą planetę przed promieniowaniem UV. Dlatego w swoich eksperymentach analizowali reakcje fotochemiczne, które mogły zachodzić przy wysokim poziomie promieniowania ultrafioletowego.
Już wcześniej było wiadomo, jak spontanicznie powstać tam mogły urydyna (U) i cytydyna (C) - literki wchodzące w skład genetycznego alfabetu RNA. Teraz naukowcy pokazali zaś, jak w podobnych warunkach mogły zaistnieć deoksyinozyna (dI) i deoksyadenozyna (dA) - nukleotydy analogiczne do struktur DNA. Literki z pierwszej dwójki tworzyłyby pary z literkami z drugiej dwójki. I w ten sposób zachodziło kopiowanie informacji.
Dr Szabla pytany, czy hybryda DNA i RNA miała jedną czy dwie nici, odpowiada, że na razie tego nie wiadomo. To dopiero wstęp do badań nad tym, jak w praktyce funkcjonował ten pradawny kwas nukleinowy.
W skład polskiego zespołu, który pracował nad publikacją, wszedł też Mikołaj Janicki z PWr. Znalazł on mechanizm, który może się okazać nowym typem fotokatalizy.
Armia izraelska nie skomentowała sobotniego ataku na Bejrut i nie podała, co miało być jego celem.